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I. INTRODUCTION

Differential equations with fractional order are generalizations of classical differential equations of integer order and have
recently been proved to be valuable tools in the modeling of many physical phenomena in various fields of science and
engineering. By using fractional derivatives a lot of works have been done for a better description of considered material
properties. Based on enhanced rheological models Mathematical modeling naturally leads to differential equations of fractional
order and to the necessity of the formulation of the initial conditions to such equations. Recently, various analytical and numerical
methods have been employed to solve linear and nonlinear fractional differential equations. The differential transform method
(DTM) was proposed by Zhou [1] to solve linear and nonlinear initial value problems in electric circuit analysis. This method has
been used for solving various types of equations by many authors [2-15]. DTM constructs an analytical solution in the form of a
polynomial and different from the traditional higher order Taylor series method. For solving two-dimensional linear and nonlinear
partial differential equations of fractional order DTM is further developed as Generalized Differential Transform Method
(GDTM) by Momani, Odibat, and Erturk in their papers [16-18].Recently, Vedat Suat Ertiirka and Shaher Momanib applied
generalized differential transform method to solve fractional integro-differential equations [19]. The GDTM is implemented to
derive the solution of space-time fractional telegraph equation by Mridula Garg,Pratibha Manohar and Shyam L.Kalla [20].
Manish Kumar Bansal,Rashmi Jain applied generalized differential transform method to solve fractional order Riccati differential
equation [21]. Aysegul Cetinkaya, Onur Kiymaz and Jale Camli applied generalized differential transform method to solve non
linear PDE’s of fractional order [22].

Il. MATHEMATICAL PRELIMINARIES ON FRACTIONAL CALCULUS
In the present analysis we introduce the following definitions[23,24].

2.1 Definition: Letax € R™ . On the usual Lebesgue space L(a, b) integral operator | “ defined by
def(x) 1} e
1“f = = —t f(t)dt d
e v (LS UL

1°f (x)=f (X)

is called Riemann-Liouville fractional integral operator of order o >0and a<X<b
It has the following properties:

l. 1“f (X) exists for any X € [a,b]
i 17 (x) =171 (x)
m. 1P f(x)=17171(x)
(y+1) o
F(a+7/+1)
where f (X)e L[a,b], a,f>0,y>-1
2.2 Definition: The Riemann-Liouville definition of fractional order derivative is

Iv. 1% =
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d" ..
DT (X) = S (%)=

where n is an integer that satisfies N—1<a <n.

1 d"
F(n—a) dx"

x—t)"“7" £ (t)dt,

O —_— <
—

2.3 Definition: A modified fractional differential operator ;D" proposed by Caputo is given by

a _ —a dn _ 1 f n-a-1 (n)
DX F (%)= K o f (X)—mg(x—t) £ (t)dt,
Where a(a € R*) is the order of operation and n is an integer that satisfies N—1<a <n.

It has the following two basic properties[25]:

I if fel (ab)or feClab]and a>0 thensDfolI¢ f (x)=f(X).
nif f eC”[a,b] and if >0 then

1 £ (0°
ol sDf f(x)= f(x)—zl%xk;n—l<a<n.
k=0 .

2.4 Definition: For m being the smallest integer that exceeds ¢ , the Caputo time-fractional derivative operator of order o >0,
is defined as[26]

Y — . a=meN
_o"u(xt) o0&
ot 1§ mea1 O"U(X, &
—_I(t‘f) %

dé ; m-1<a<m

Relation between Caputo derivative and Riemann-Liouville derivative:

m-1 &) (o
sD¢f (x)= "D f (X)_ZI“(k——((Jer)l)Xka :m-l<a<m

Integrating by parts, we get the following formulae as given by[27]

b b n-1
L J900:D; F(x)d=] £ D7 (x)der 2[ D5 "9 05 (1)

I Forn:]_,j.g(x): dX J' RLDl;lg )dx+[xlé‘ag(x).f(X)J:

I11. GENERALIZED TWO DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD
Consider a function of two variables U (X, y) be a product of two single-variable functions, i.e.u(x,y)= f (x)g(y), which
is analytic and differentiated continuously with respect to X and Y in the domain of interest. Then the generalized two-

dimensional differential transform of the function U (X, y ) is given by [16-18]

Ve (M) =5 ir (ﬁh+1)[(D)(Dﬂ) (X’y)lxo,yo) @

where O0<a, f<1;U,_ (k,h) F, (k)G ( ) is called the spectrum of u(X, y)and

(D2)" =Dg DY o DE (K —times)

The inverse generalized differential transform of Uaﬁ (k, h) is given by
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zUa,ﬂ(k’h)(x_XO)ka(y_VO)hﬂ )
It has the following properties:

I ifu(xy)=v(xy)xw(xy) ten U,  (k,h)=V,  (k,h)xW,  (k,h)
. ifu(x,y)=av(x,y),aeRthen Ua'ﬂ(k,h) 5 (k.h)

lZ

(
. it u(xy)=v(xy)w(xy) then U, ,(k, ):ggvaﬂ(r h-s)W, ,(k-r,s)
V. ifu(xy)=v(X y)w(x y)a(x,y) then
Ua’ﬂ(k,h)=§: zth:Z:UM(r,h—s— W, ,(.5)Q, , (k—r—t, p)

Voo ifu(xy)=(x=%)"(y=¥,)" then U, ,(k,h)=5(k=n)s(h—m)

T k+1)+1
VI. ifu(x,y):D;‘;v(x,y),0<a£1then U, ,(k.h)= (l(f(( I:+)1;r )Va,ﬂ(kJrl,h)
a

VIL it u(x,y)=D]v(xy),0<y <lthen Ua’ﬂ(k,h)=r£ﬁa(k—;7ir)l) aﬂ(k-i-— hj
ak + a

Vil if u(x,y) =Dl v(xy),0<y <1 then U“*ﬂ(k’h):?ihﬂ—mv“ﬁ(k’m%j

IX. if u(x,y) = f(X)g(y) and the function f (X)=x"h(x) where A >—1, h(X) has the generalized Taylor series
expansion h(X) = Z a, (X=X, )ak and
n=0

(@ L <A+1and o isarbitrary or
(b) B=A+1, aisarbitraryand @, =0 for n=0,1,2,....m-1,wherem-1< g <m.
Then (3.1) becomes

1 a (ph\"
U”"ﬂ(k'h):F(ak+1)F(ﬂh+1)[DX° (Dy") (. y)lXo,Vo)

X ifv(xy)=f(x)g(y), the function f(x) satisfies the conditions given in (1X) and u(X, y)= D V(X,y) then

Uaﬁ(k,h)=r(a(k+1)+ ) aﬂ(k+g hj

I'(ak+1)

where U, , (k h) (k h)and W, (k, h) are the differential transformations of the functions u(x, y),V(X, y) and

W(X, y) respectively and

IV. TEST PROBLEMS
In this section, we present three examples [28] to illustrate the applicability of Generalized Differential Transform Method
(GDTM) to solve non linear time fractional Burger’s partial differential equations.
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4.1 Example: We consider the following non-linear time fractional Burger’s partial differential equation

o“u(x,t ou(x,t o%u(x,t

0] D) Pule)
t OX OX

subject to initial condition U(X,0)=; X €R

t>0

®)
where — is the fractional differential operator(Caputo derivative) of order 0 <ar <1
Applying generalized two-dimensional differential transform (1) with (x,, t,) = (0,0) on (3) we obtain
I(a(h-1)+1)
U. (k,h)= k+2)(k+1)U, (k+2,h-1)—
o)== (ke 2) (kU )
k h-1
> YU, (rh=s-1)(k-r+1)U,, (k-r+1Lh-1) 4)
r=0 s=
and U, (k,0)=w Vk=0,123,..... (5)

Now utilizing the recurrence relation (4) and the initial condition (5), we obtain after a little simplification the following values of
u,., (k, h) for k=0,1,2,3,...and h=0,1,2,3,...

U,,(0,1)= (2r0-0°);

I'(a+1)

u,,(0,2)= L {[ L (a)z—Zya))Jra)J(?»a)z—G;/a))

I'(a+1) (| T(a+1)

+2y (12]/60— 60’ ) ;

3 6

U, (11)= ['(a+1) (27@_@2); U (21)= I'(a+1) (27@_(02);
10 15

Ui (3= r(a+1)(27“’“02)‘ U (4.2)= r(a+1)(2m_wz);
21 28

U.. (5:1)= ['(a+1) (27@_”2); U..(681)= ['(a+1) (2}/(0_(02)

and so on

Using the above values ofU, , (k, h) for k=0,1,2,3,...and h=0,1,2,3,... in (2) the solution of (3) is obtained as

u(x,t)=a;+ (2760—602)t“+

1
I'(a+1)

[(F(alﬂ) (0 -2y0)+ w}(sa,z ~6yw)+2y (12y0— 60’ )]tZ“

{”*r(;+1)(27“"“’2)ta]“{”+r(;ﬂ)(zm‘”z)ta}xz

I'(a+1)
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10 @ 15 a
+(a)+r(a+l)(27a)—a)2)t JX3+{a)+r(a+1)(27a)—co2>t JX“

21 . 28 .
+(mr(oc+1)(2m_w2)t st{mr(ml)(zm_wz)t }m """ ?

4.2 Example: We consider the following non-linear time fractional Burger’s partial differential equation

a 2
guixt) uafi(’t)+u(x,t)au((;’t) :;/a l:35()2(’t)+cu2(x,t); t>0

subject to initial condition u(X,0)= ;X €R

O

a

where is the fractional differential operator(Caputo derivative) of order 0 <x <1

a

OX
C is areal constant.

Applying generalized two-dimensional differential transform (2) with (x,, t,) = (0,0) on (7) we obtain
I(a(h-1)+1)
I'(ah+1)

U, (k.h)= {r(k+2)(k+1)U,, (k+2,h-1)

kK h-1

r=0 s=0

U, (r,h—s-1)(k-r+1)U,,(k—r+1,h-1)

(24

h-1

+CZk:ZUM (r,h—s-1)U,, (k-r,s)

r=0 s= (8)

and U, , (k,O) =w; Vk=0,12,3,.......
C)]

Now utilizing the recurrence relation (8) and the initial condition (9), we obtain after a little simplification the following values of

Ulya(k,h) for k=0,1,2,3,... and h=0,1,2,3,... U, (0,1): F( 1+1)(27a)+(C—l)a)2);
a

1

r(2a+1) L_(r(alﬂ)(27w+(c_1)w2)m]

(6yw+(2c—3)a)2)+27/(127/a)+3(c—2)a)2)+ 2a)(27a)+(c—1)a)2));
3

U..(0.2)=

. (6yw+(2c—3)a)2)- U, (21)=

’ lLa

U, (31)= (10yw+(2c-5)0’); U, , (4,1) =

I'(a+1)
3
I'(a+1)

U, (51)= (14y0+(2c-7)0); U, (6,1) = (4yw+(5c-2)0*)

I'(a+1)
and so on
Using the above values of U, , (k, h) for k =0,1,2,3,...and h=0,1,2,3,...in (2) the solution of (7) is obtained as

u(x,t)=w+

(27/60+(C—1) a)z)t“ +

1
I'(a+1)
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{co+r(:Jrl)(6yw+(2c—3)a)2)tajx+(a)+ (4ya)+(c—2)a>2)t“Jx2

I'(a+1)
5

{m F(;l) (107w+(2c—5)a)2)t“jx3 +(a)+ () (6ya)+(c—3)a)2)tajx4

+[a)+ F(0?+1) (147w+(20—7)w2)t"]x5 +[a)+ r(i4+1) (47w+(50—2)a)2)t“]X6 o

(10)
4.3 Example: We consider the following non-linear time fractional Burger’s partial
differential equation
o“u(xt ou(xt ou(x,t
(50 , o) 200 _ U0
ot” OX OX
subject to initial condition u(X,0)=w@; x €R
(11)
where o is the fractional differential operator(Caputo derivative) of order 0 < o < 1
X
Applying generalized two-dimensional differential transform (1) with (x,, t,) = (0,0) on (11) we obtain
I(a(h-1)+1)
U. (k,h)= k+2)(k+1)U, (k+2,h-1
) == ke 2) (kU )
K k=r h-1h-s-1
>, U, (rh-s—p-1)U, (ts)(k-r-t+1)u, (k-r-t+1,h-1)
r=0 t=0 s=0 p=0 (12)
and U, (k,0)=w; Vk=0,1,2,3,....... (13)

Now utilizing the recurrence relation (12) and the initial condition (13), we obtain after a little simplification the following values

ofU, , (k,h) for k=0,1,2,3,... and h=0,1,2,3,... U, (0,1) = ¥ 1+1) (2r0-0°);
(04

U,,(0,2)= F(Z;LHl) {_(F(052+1) w(2ya;—w3)+w2}(6ya)~4a)3)

+4}/(6}/a)—5a)3);

2 1
U, (11)= 3yw-20°); U, (2,1)= 6yw—50°); U, (3,1)= 200 170" ) ;
o (1) =y (90 207); Ve () = g (Br=807); U (30) = s (2070 -170)
2 1
Uy, (42)=— @D (1570-130°); U, , (5.1) = (D (42y0-370°);
2
U, (61)= latd) (28y0-250°)
and so on

Using the above values of U, (k, h) for k=0,1,2,3,...and h=0,1,2,3,...in (2) the solution of (11) is obtained as
1

u(x,t)=w+ —F(2a+1)

(27/a)—a)3)t“ +

1
F(a+l)
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—(ﬁa)(Zw)—ws)+a)zJ(6y@—4a)3)+47(67/a)—5a)3) t

2 « 2 P
+ a)+m(37a)—2a)3)t jx+(m+m(67a)—5a)3)t JXZ

+ a)+;)(20;/(0—17a)3)t“JX3 +[a)+

2
— (15w -130° )t* |x*
(a+1 )( o-130°) JX

I'(a+1

1 2
= (#2y0-37° )t |x° _c
o g (-0 ]x +(a)+1“(a+1)

(14)

V. CONCLUSIONS

In the present study, we present analytical algorithm for finding approximate form solutions of a class of Burger’s model based
upon the generalized differential transform method (GDTM). It may be concluded that GDTM is a reliable technique to handle
linear and nonlinear fractional differential equations. Compared with other approximate methods this technique provides more
realistic series solutions.
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