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I. INTRODUCTION 

Differential equations with fractional order are generalizations of classical differential equations of integer order and have 

recently been proved to be valuable tools in the modeling of many physical phenomena in various fields of science and 

engineering. By using fractional derivatives a lot of works have been done for a better description of considered material 

properties. Based on enhanced rheological models Mathematical modeling naturally leads to differential equations of fractional 

order and to the necessity of the formulation of the initial conditions to such equations. Recently, various analytical and numerical 

methods have been employed to solve linear and nonlinear fractional differential equations. The differential transform method 

(DTM) was proposed by Zhou [1] to solve linear and nonlinear initial value problems in electric circuit analysis. This method has 

been used for solving various types of equations by many authors [2-15]. DTM constructs an analytical solution in the form of a 

polynomial and different from the traditional higher order Taylor series method. For solving two-dimensional linear and nonlinear 

partial differential equations of fractional order DTM is further developed as Generalized Differential Transform Method 

(GDTM) by Momani, Odibat, and Erturk in their papers [16-18].Recently, Vedat Suat Ertiirka and Shaher Momanib applied 

generalized differential transform method to solve fractional integro-differential equations [19]. The GDTM is implemented to 

derive the solution of space-time fractional telegraph equation by Mridula Garg,Pratibha Manohar and Shyam L.Kalla [20]. 

Manish Kumar Bansal,Rashmi Jain applied  generalized differential transform method to solve fractional order Riccati differential 

equation [21]. Aysegul Cetinkaya, Onur Kiymaz and Jale Camli applied  generalized differential transform method to solve non 

linear PDE’s of fractional order [22]. 

 

II. MATHEMATICAL PRELIMINARIES ON FRACTIONAL CALCULUS 

In the present analysis we introduce the following definitions[23,24]. 

2.1 Definition: Let R  . On the usual Lebesgue space  ,L a b integral operator I defined by 
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is called Riemann-Liouville fractional integral operator of order 0  and a x b   

It has the following properties: 

I.  I f x
 exists for any  ,x a b  

II.    I I f x I f x     

III.    I I f x I I f x     
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where    ,f x L a b , , 0    , 1    

2.2 Definition: The Riemann-Liouville definition of fractional order derivative is 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 

 

JETIR1811A96 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 760 

 

   
 

   
1

0 0

0

1
,

xn n
nRL n

x xn n

d d
D f x I f x x t f t dt

dx n dx

 



   
    

where n  is an integer that satisfies 1n n   .  

 

2.3 Definition: A modified fractional differential operator 0

c

xD
 proposed by Caputo is given by  
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Where  R   is the order of operation and n is an integer that satisfies 1n n   . 

It has the following two basic properties[25]: 

I. If  ,f L a b  or  ,f C a b  and 0   then    0 0

c

x xD I f x f x   . 

II. If  ,nf C a b  and if 0   then  
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2.4 Definition: For m being the smallest integer that exceeds  , the Caputo time-fractional derivative operator of order 0  , 

is defined as[26] 
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Relation between Caputo derivative and Riemann-Liouville derivative: 
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Integrating by parts, we get the following formulae as given by[27] 

I.            
1

1

0

b b n
b

c RL RL j n RL n j

a x x b x b x b
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ja a

g x D f x dx f x D g x dx D g x D f x  


   



       

II. For 1n  ,            1 .

b b
b

c RL

a x x b x b
a

a a

g x D f x dx f x D g x dx I g x f x         

III. GENERALIZED TWO DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD 

Consider a function of two variables  ,u x y  be a product of two single-variable functions, i.e.      ,u x y f x g y , which 

is analytic and differentiated continuously with respect to x and y in the domain of interest. Then the generalized two-

dimensional differential transform of the function  ,u x y is given by [16-18] 
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                                                    (1) 

where 0 , 1   ;      , ,U k h F k G h     is called the spectrum of  ,u x y and    

 
0 0 0 0

, ,.........,
k

x x x xD D D D      ( k  times) 

The inverse generalized differential transform of  , ,U k h  is given by 
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  It has the following properties: 

I. if      , , ,u x y v x y w x y   then      , , ,, , ,U k h V k h W k h         

II. if    , , ,u x y av x y a R then    , ,, ,U k h aV k h     

III. if      , , ,u x y v x y w x y  then      , , ,
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(a) 1    and   is arbitrary or  

(b) 1    ,  is arbitrary and 0na   for 0,1,2,..... 1n m   , where 1m m   . 

Then (3.1) becomes 
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where    , ,, , ,U k h V k h    and  , ,W k h  are the differential transformations of the functions    , , ,u x y v x y and 

 ,w x y respectively and 
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 IV. TEST PROBLEMS 

In this section, we present three examples [28] to illustrate the applicability of Generalized Differential Transform Method 

(GDTM) to solve non linear time fractional  Burger’s partial differential equations. 
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4.1 Example: We consider the following  non-linear time fractional Burger’s partial differential  equation  
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 ; 0t   

subject to initial condition  ,0u x  ; xR 

                                                                                                                                                                          (3) 

where 
t








is the fractional differential operator(Caputo derivative) of order 0 1   .   

Applying generalized two-dimensional differential transform (1) with (𝑥0, 𝑡0) = (0,0) on (3) we obtain 
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and   1, ,0U k    0,1,2,3,.......k                                                                                                    (5)                                                                                                           

Now utilizing the recurrence relation (4) and the initial condition (5), we obtain after a little simplification the following values of

 1, ,U k h  for 0,1,2,3,...k  and 0,1,2,3,...h   

 
 

 2

1,

1
0,1 2

1
U   


 
 

;  

 
   

   2 2

1,

1 1
0,2 2 3 6

1 1
U      

 

 
         

 

                        22 12 6    ; 

 
 

 2

1,

3
1,1 2

1
U   


 
 

;  
 

 2

1,

6
2,1 2

1
U   


 
 

; 

  
 

 2

1,

10
3,1 2

1
U   


 
 

;  
 

 2

1,

15
4,1 2

1
U   


 
 

;  

 
 

 2

1,

21
5,1 2

1
U   


 
 

;  
 

 2

1,

28
6,1 2

1
U   


 
 

 

and so on 

Using the above values of  1, ,U k h  for 0,1,2,3,...k  and 0,1,2,3,...h  in (2) the solution of (3) is obtained as          
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4.2 Example:  We consider the following  non-linear time fractional Burger’s partial differential  equation  
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where 
x








is the fractional differential operator(Caputo derivative) of order 0 1  . 

c
 
is a real constant. 

 

 Applying generalized two-dimensional differential transform (2) with (𝑥0, 𝑡0) = (0,0) on (7) we obtain 
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and  1, ,0U k  ; 0,1,2,3,.......k 
                                                                                                   (9)

   

 

Now utilizing the recurrence relation (8) and the initial condition (9), we obtain after a little simplification the following values of

 1, ,U k h  for 0,1,2,3,...k   and 0,1,2,3,...h    
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and so on 

Using the above values of  1, ,U k h  for 0,1,2,3,...k  and 0,1,2,3,...h  in (2) the solution of (7) is obtained as          
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4.3 Example:  We consider the following  non-linear time fractional Burger’s partial  

      differential  equation  
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where 
x








is the fractional differential operator(Caputo derivative) of order 0 1  . 

Applying generalized two-dimensional differential transform (1) with (𝑥0, 𝑡0) = (0,0) on (11) we obtain 
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and  1, ,0U k  ; 0,1,2,3,.......k 
                                                                                                 

(13) 

Now utilizing the recurrence relation (12) and the initial condition (13), we obtain after a little simplification the following values 

of  1, ,U k h  for 0,1,2,3,...k   and 0,1,2,3,...h    
 

 3

1,

1
0,1 2

1
U   


 
 

;  

 
   

   3 2 3

1,

1 2
0,2 2 6 4

2 1 1
U       

 

  
           

 

 34 6 5    ;  

 
 

 3

1,

2
1,1 3 2

1
U   


 
 

;  
 

 3

1,

2
2,1 6 5

1
U   


 
 

;  
 

 3

1,

1
3,1 20 17

1
U   


 
 

; 

 
 

 3

1,

2
4,1 15 13

1
U   


 
 

;  
 

 3

1,

1
5,1 42 37

1
U   


 
 

; 

 
 

 3

1,

2
6,1 28 25

1
U   


 
 

 

and so on 

Using the above values of  1, ,U k h  for 0,1,2,3,...k  and 0,1,2,3,...h  in (2) the solution of (11) is obtained as          
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V. CONCLUSIONS 

In the present study, we present analytical algorithm for finding approximate form solutions of a class of  Burger’s model based 

upon  the generalized differential transform method (GDTM). It may be concluded that GDTM is a reliable technique to handle 

linear and nonlinear fractional differential equations. Compared with other approximate methods this technique provides more 

realistic series solutions. 
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