Approximate Series Solution of Non Linear Fractional Burger's Equations Using Generalized Differential Transform Method

Deepanjan Das
Department of Mathematics, Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur,Malda,West Bengal-732141,India,

Abstract

In the present paper, generalized differential transform method (GDTM) is used for obtaining the approximate analytic solutions of non-linear Burger's partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense.

Keywords: Fractional differential equations; Caputo fractional derivative; Generalized Differential transform method; Analytic solution.

Mathematical Subject Classification (2010): 26A33, 34A08, 35A22, 35R11, 35C10, 74H10.

I. INTRODUCTION

Differential equations with fractional order are generalizations of classical differential equations of integer order and have recently been proved to be valuable tools in the modeling of many physical phenomena in various fields of science and engineering. By using fractional derivatives a lot of works have been done for a better description of considered material properties. Based on enhanced rheological models Mathematical modeling naturally leads to differential equations of fractional order and to the necessity of the formulation of the initial conditions to such equations. Recently, various analytical and numerical methods have been employed to solve linear and nonlinear fractional differential equations. The differential transform method (DTM) was proposed by Zhou [1] to solve linear and nonlinear initial value problems in electric circuit analysis. This method has been used for solving various types of equations by many authors [2-15]. DTM constructs an analytical solution in the form of a polynomial and different from the traditional higher order Taylor series method. For solving two-dimensional linear and nonlinear partial differential equations of fractional order DTM is further developed as Generalized Differential Transform Method (GDTM) by Momani, Odibat, and Erturk in their papers [16-18].Recently, Vedat Suat Ertiirka and Shaher Momanib applied generalized differential transform method to solve fractional integro-differential equations [19]. The GDTM is implemented to derive the solution of space-time fractional telegraph equation by Mridula Garg,Pratibha Manohar and Shyam L.Kalla [20]. Manish Kumar Bansal,Rashmi Jain applied generalized differential transform method to solve fractional order Riccati differential equation [21]. Aysegul Cetinkaya, Onur Kiymaz and Jale Camli applied generalized differential transform method to solve non linear PDE's of fractional order [22].

II. MATHEMATICAL PRELIMINARIES ON FRACTIONAL CALCULUS

In the present analysis we introduce the following definitions[23,24].
2.1 Definition: Let $\alpha \in R^{+}$. On the usual Lebesgue space $L(a, b)$ integral operator I^{α} defined by

$$
\begin{gathered}
I^{\alpha} f(x)=\frac{d^{-\alpha} f(x)}{d x^{-\alpha}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t \quad \text { and } \\
I^{0} f(x)=f(x)
\end{gathered}
$$

is called Riemann-Liouville fractional integral operator of order $\alpha \geq 0$ and $a \leq x<b$
It has the following properties:
I. $\quad I^{\alpha} f(x)$ exists for any $x \in[a, b]$
II. $\quad I^{\alpha} I^{\beta} f(x)=I^{\alpha+\beta} f(x)$
III. $\quad I^{\alpha} I^{\beta} f(x)=I^{\beta} I^{\alpha} f(x)$
IV. $\quad I^{\alpha} x^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\alpha+\gamma+1)} x^{\alpha+\gamma}$
where $f(x) \in L[a, b], \alpha, \beta \geq 0, \gamma>-1$
2.2 Definition: The Riemann-Liouville definition of fractional order derivative is

$$
{ }_{0}^{R L} D_{x}^{\alpha} f(x)=\frac{d^{n}}{d x^{n}}{ }_{0} I_{x}^{n-\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d x^{n}} \int_{0}^{x}(x-t)^{n-\alpha-1} f(t) d t,
$$

where n is an integer that satisfies $n-1<\alpha<n$.
2.3 Definition: A modified fractional differential operator ${ }_{0}^{c} D_{x}^{\alpha}$ proposed by Caputo is given by

$$
{ }_{0}^{c} D_{x}^{\alpha} f(x)={ }_{0} I_{x}^{n-\alpha} \frac{d^{n}}{d x^{n}} f(x)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{x}(x-t)^{n-\alpha-1} f^{(n)}(t) d t,
$$

Where $\alpha\left(\alpha \in R^{+}\right)$is the order of operation and n is an integer that satisfies $n-1<\alpha<n$.
It has the following two basic properties[25]:
I. If $f \in L_{\infty}(a, b)$ or $f \in C[a, b]$ and $\alpha>0$ then ${ }_{0}^{c} D_{x 0}^{\alpha} I_{x}^{\alpha} f(x)=f(x)$.
II. If $f \in C^{n}[a, b]$ and if $\alpha>0$ then

$$
{ }_{0} I_{x}^{\alpha}{ }_{0}^{c} D_{x}^{\alpha} f(x)=f(x)-\sum_{k=0}^{n-1} \frac{f^{(k)}\left(0^{+}\right)}{k!} x^{k} ; n-1<\alpha<n .
$$

2.4 Definition: For m being the smallest integer that exceeds α, the Caputo time-fractional derivative operator of order $\alpha>0$, is defined as[26]

$$
D_{t}^{\alpha} u(x, t)=\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}=\left\{\begin{array}{cc}
\frac{\partial^{m} u(x, \xi)}{\partial \xi^{m}} & ; \quad \alpha=m \in N \\
\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t}(t-\xi)^{m-\alpha-1} \frac{\partial^{m} u(x, \xi)}{\partial \xi^{m}} d \xi ; & m-1 \leq \alpha<m
\end{array}\right.
$$

Relation between Caputo derivative and Riemann-Liouville derivative:

$$
{ }_{0}^{c} D_{x}^{\alpha} f(x)={ }_{0}^{R L} D_{t}^{\alpha} f(x)-\sum_{k=0}^{m-1} \frac{f^{(k)}\left(0^{+}\right)}{\Gamma(k-\alpha+1)} x^{k-\alpha} ; m-1<\alpha<m
$$

Integrating by parts, we get the following formulae as given by[27]
I. $\int_{a}^{b} g(x){ }_{a}^{c} D_{x}^{\alpha} f(x) d x=\int_{a}^{b} f(x){ }_{x}^{R L} D_{b}^{\alpha} g(x) d x+\sum_{j=0}^{n-1}\left[{ }_{x}^{R L} D_{b}^{\alpha+j-n} g(x){ }_{x}^{R L} D_{b}^{n-j-1} f(x)\right]_{a}^{b}$
II. For $n=1, \int_{a}^{b} g(x){ }_{a}^{c} D_{x}^{\alpha} f(x) d x=\int_{a}^{b} f(x)^{R L} D_{b}^{\alpha} g(x) d x+\left[I_{b}^{1-\alpha} g(x) \cdot f(x)\right]_{a}^{b}$

III. GENERALIZED TWO DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD

Consider a function of two variables $u(x, y)$ be a product of two single-variable functions, i.e. $u(x, y)=f(x) g(y)$, which is analytic and differentiated continuously with respect to x and y in the domain of interest. Then the generalized twodimensional differential transform of the function $u(x, y)$ is given by [16-18]
$U_{\alpha, \beta}(k, h)=\frac{1}{\Gamma(\alpha k+1) \Gamma(\beta h+1)}\left[\left(D_{x_{0}}^{\alpha}\right)^{k}\left(D_{y_{0}}^{\beta}\right)^{h} u(x, y)\right]_{\left(x_{0}, y_{0}\right)}$
where $0<\alpha, \beta \leq 1 ; U_{\alpha, \beta}(k, h)=F_{\alpha}(k) G_{\beta}(h)$ is called the spectrum of $u(x, y)$ and
$\left(D_{x_{0}}^{\alpha}\right)^{k}=D_{x_{0}}^{\alpha}, D_{x_{0}}^{\alpha}, \ldots \ldots \ldots ., D_{x_{0}}^{\alpha}(k-$ times $)$
The inverse generalized differential transform of $U_{\alpha, \beta}(k, h)$ is given by
$u(x, y)=\sum_{k=0}^{\infty} \sum_{h=0}^{\infty} U_{\alpha, \beta}(k, h)\left(x-x_{0}\right)^{k \alpha}\left(y-y_{0}\right)^{h \beta}$
It has the following properties:
I. \quad if $u(x, y)=v(x, y) \pm w(x, y)$ then $U_{\alpha, \beta}(k, h)=V_{\alpha, \beta}(k, h) \pm W_{\alpha, \beta}(k, h)$
II. if $u(x, y)=a v(x, y), a \in \mathrm{R}$ then $U_{\alpha, \beta}(k, h)=a V_{\alpha, \beta}(k, h)$
III. if $u(x, y)=v(x, y) w(x, y)$ then $U_{\alpha, \beta}(k, h)=\sum_{r=0}^{k} \sum_{s=0}^{h} V_{\alpha, \beta}(r, h-s) W_{\alpha, \beta}(k-r, s)$
IV. if $u(x, y)=v(x, y) w(x, y) q(x, y)$ then
$U_{\alpha, \beta}(k, h)=\sum_{r=0}^{k} \sum_{t=0}^{k-r} \sum_{s=0}^{h} \sum_{p=0}^{h-s} U_{\alpha, \beta}(r, h-s-p) W_{\alpha, \beta}(t, s) Q_{\alpha, \beta}(k-r-t, p)$
V. if $u(x, y)=\left(x-x_{0}\right)^{n \alpha}\left(y-y_{0}\right)^{m \beta}$ then $U_{\alpha, \beta}(k, h)=\delta(k-n) \delta(h-m)$
VI. if $u(x, y)=D_{x_{0}}^{\alpha} v(x, y), 0<\alpha \leq 1$ then $U_{\alpha, \beta}(k, h)=\frac{\Gamma(\alpha(k+1)+1)}{\Gamma(\alpha k+1)} V_{\alpha, \beta}(k+1, h)$
VII. if $u(x, y)=D_{x_{0}}^{\gamma} v(x, y), 0<\gamma \leq 1$ then $U_{\alpha, \beta}(k, h)=\frac{\Gamma(\alpha k+\gamma+1)}{\Gamma(\alpha k+1)} V_{\alpha, \beta}\left(k+\frac{\gamma}{\alpha}, h\right)$
VIII. if $u(x, y)=D_{y_{0}}^{\gamma} v(x, y), 0<\gamma \leq 1$ then $U_{\alpha, \beta}(k, h)=\frac{\Gamma(\beta h+\gamma+1)}{\Gamma(\beta h+1)} V_{\alpha, \beta}\left(k, h+\frac{\gamma}{\beta}\right)$
IX. if $u(x, y)=f(x) g(y)$ and the function $f(x)=x^{\lambda} h(x)$ where $\lambda>-1, h(x)$ has the generalized Taylor series expansion $h(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{\alpha k}$ and
(a) $\beta<\lambda+1$ and α is arbitrary or
(b) $\beta \geq \lambda+1, \alpha$ is arbitrary and $a_{n}=0$ for $n=0,1,2, \ldots \ldots m-1$, where $m-1<\beta \leq m$.

Then (3.1) becomes

$$
U_{\alpha, \beta}(k, h)=\frac{1}{\Gamma(\alpha k+1) \Gamma(\beta h+1)}\left[D_{x_{0}}^{\alpha k}\left(D_{y_{0}}^{\beta}\right)^{h} u(x, y)\right]_{\left(x_{0}, y_{0}\right)}
$$

X. if $v(x, y)=f(x) g(y)$, the function $f(x)$ satisfies the conditions given in (IX) and $u(x, y)=D_{x_{0}}^{\gamma} v(x, y)$, then

$$
U_{\alpha, \beta}(k, h)=\frac{\Gamma(\alpha(k+1)+\gamma)}{\Gamma(\alpha k+1)} V_{\alpha, \beta}\left(k+\frac{\gamma}{\alpha}, h\right)
$$

where $U_{\alpha, \beta}(k, h), V_{\alpha, \beta}(k, h)$ and $W_{\alpha, \beta}(k, h)$ are the differential transformations of the functions $u(x, y), v(x, y)$ and $w(x, y)$ respectively and

$$
\delta(k-n)=\left\{\begin{array}{lll}
1 & ; & k=n \\
0 & ; & k \neq n
\end{array}\right.
$$

IV. TEST PROBLEMS

In this section, we present three examples [28] to illustrate the applicability of Generalized Differential Transform Method (GDTM) to solve non linear time fractional Burger's partial differential equations.
4.1 Example: We consider the following non-linear time fractional Burger's partial differential equation
$\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}+u(x, t) \frac{\partial u(x, t)}{\partial x}=\gamma \frac{\partial^{2} u(x, t)}{\partial x^{2}} ; t \geq 0$
subject to initial condition $u(x, 0)=\omega ; x \in \mathrm{R}$
where $\frac{\partial^{\alpha}}{\partial t^{\alpha}}$ is the fractional differential operator(Caputo derivative) of order $0<\alpha \leq 1$.
Applying generalized two-dimensional differential transform (1) with $\left(x_{0}, t_{0}\right)=(0,0)$ on (3) we obtain
$U_{1, \alpha}(k, h)=\frac{\Gamma(\alpha(h-1)+1)}{\Gamma(\alpha h+1)}\left\{\gamma(k+2)(k+1) U_{1, \alpha}(k+2, h-1)-\right.$

$$
\begin{equation*}
\sum_{r=0}^{k} \sum_{s=0}^{h-1} U_{1, \alpha}(r, h-s-1)(k-r+1) U_{1, \alpha}(k-r+1, h-1) \tag{4}
\end{equation*}
$$

and $U_{1, \alpha}(k, 0)=\omega \quad \forall k=0,1,2,3, \ldots \ldots$.
Now utilizing the recurrence relation (4) and the initial condition (5), we obtain after a little simplification the following values of $U_{1, \alpha}(k, h)$ for $k=0,1,2,3, \ldots$ and $h=0,1,2,3, \ldots$
$U_{1, \alpha}(0,1)=\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) ;$
$U_{1, \alpha}(0,2)=\frac{1}{\Gamma(\alpha+1)}\left(\left(\frac{1}{\Gamma(\alpha+1)}\left(\omega^{2}-2 \gamma \omega\right)+\omega\right)\left(3 \omega^{2}-6 \gamma \omega\right)\right.$

$$
+2 \gamma\left(12 \gamma \omega-6 \omega^{2}\right)
$$

$U_{1, \alpha}(1,1)=\frac{3}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) ; U_{1, \alpha}(2,1)=\frac{6}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) ;$
$U_{1, \alpha}(3,1)=\frac{10}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) ; U_{1, \alpha}(4,1)=\frac{15}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right)$
$U_{1, \alpha}(5,1)=\frac{21}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) ; U_{1, \alpha}(6,1)=\frac{28}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right)$
and so on
Using the above values of $U_{1, \alpha}(k, h)$ for $k=0,1,2,3, \ldots$ and $h=0,1,2,3, \ldots$ in (2) the solution of (3) is obtained as

$$
\begin{aligned}
& u(x, t)=\omega+\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}+\frac{1}{\Gamma(\alpha+1)} \\
& \left(\left(\frac{1}{\Gamma(\alpha+1)}\left(\omega^{2}-2 \gamma \omega\right)+\omega\right)\left(3 \omega^{2}-6 \gamma \omega\right)+2 \gamma\left(12 \gamma \omega-6 \omega^{2}\right)\right) t^{2 \alpha} \\
& +\left(\omega+\frac{3}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}\right) x+\left(\omega+\frac{6}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}\right) x^{2}
\end{aligned}
$$

$$
\begin{align*}
& +\left(\omega+\frac{10}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}\right) x^{3}+\left(\omega+\frac{15}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}\right) x^{4} \\
& +\left(\omega+\frac{21}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}\right) x^{5}+\left(\omega+\frac{28}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{2}\right) t^{\alpha}\right) x^{6}+\ldots \ldots \tag{6}
\end{align*}
$$

4.2 Example: We consider the following non-linear time fractional Burger's partial differential equation
$\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}+u(x, t) \frac{\partial u(x, t)}{\partial x}=\gamma \frac{\partial^{2} u(x, t)}{\partial x^{2}}+c u^{2}(x, t) ; t \geq 0$
subject to initial condition $u(x, 0)=\omega ; x \in \mathrm{R}$
where $\frac{\partial^{\alpha}}{\partial x^{\alpha}}$ is the fractional differential operator(Caputo derivative) of order $0<\alpha \leq 1$.
c is a real constant.
Applying generalized two-dimensional differential transform (2) with $\left(x_{0}, t_{0}\right)=(0,0)$ on (7) we obtain
$U_{1, \alpha}(k, h)=\frac{\Gamma(\alpha(h-1)+1)}{\Gamma(\alpha h+1)}\left\{\gamma(k+2)(k+1) U_{1, \alpha}(k+2, h-1)\right.$
$-\sum_{r=0}^{k} \sum_{s=0}^{h-1} U_{1, \alpha}(r, h-s-1)(k-r+1) U_{1, \alpha}(k-r+1, h-1)$
$+c \sum_{r=0}^{k} \sum_{s=0}^{h-1} U_{1, \alpha}(r, h-s-1) U_{1, \alpha}(k-r, s)$
and $U_{1, \alpha}(k, 0)=\omega ; \forall k=0,1,2,3, \ldots \ldots$.

Now utilizing the recurrence relation (8) and the initial condition (9), we obtain after a little simplification the following values of $U_{1, \alpha}(k, h)$ for $k=0,1,2,3, \ldots$ and $h=0,1,2,3, \ldots U_{1, \alpha}(0,1)=\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega+(c-1) \omega^{2}\right) ;$
$U_{1, \alpha}(0,2)=\frac{1}{\Gamma(2 \alpha+1)}\left(-\left(\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega+(c-1) \omega^{2}\right)+\omega\right)\right.$
$\left.\left(6 \gamma \omega+(2 c-3) \omega^{2}\right)+2 \gamma\left(12 \gamma \omega+3(c-2) \omega^{2}\right)+2 \omega\left(2 \gamma \omega+(c-1) \omega^{2}\right)\right) ;$
$U_{1, \alpha}(1,1)=\frac{1}{\Gamma(\alpha+1)}\left(6 \gamma \omega+(2 c-3) \omega^{2}\right) ; U_{1, \alpha}(2,1)=\frac{3}{\Gamma(\alpha+1)}\left(4 \gamma \omega+(c-2) \omega^{2}\right) ;$
$U_{1, \alpha}(3,1)=\frac{2}{\Gamma(\alpha+1)}\left(10 \gamma \omega+(2 c-5) \omega^{2}\right) ; U_{1, \alpha}(4,1)=\frac{5}{\Gamma(\alpha+1)}\left(6 \gamma \omega+(c-3) \omega^{2}\right) ;$
$U_{1, \alpha}(5,1)=\frac{3}{\Gamma(\alpha+1)}\left(14 \gamma \omega+(2 c-7) \omega^{2}\right) ; U_{1, \alpha}(6,1)=\frac{14}{\Gamma(\alpha+1)}\left(4 \gamma \omega+(5 c-2) \omega^{2}\right)$
and so on
Using the above values of $U_{1, \alpha}(k, h)$ for $k=0,1,2,3, \ldots$ and $h=0,1,2,3, \ldots$ in (2) the solution of (7) is obtained as
$u(x, t)=\omega+\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega+(c-1) \omega^{2}\right) t^{\alpha}+$

$$
\begin{align*}
& \left(\omega+\frac{1}{\Gamma(\alpha+1)}\left(6 \gamma \omega+(2 c-3) \omega^{2}\right) t^{\alpha}\right) x+\left(\omega+\frac{3}{\Gamma(\alpha+1)}\left(4 \gamma \omega+(c-2) \omega^{2}\right) t^{\alpha}\right) x^{2} \\
& +\left(\omega+\frac{2}{\Gamma(\alpha+1)}\left(10 \gamma \omega+(2 c-5) \omega^{2}\right) t^{\alpha}\right) x^{3}+\left(\omega+\frac{5}{\Gamma(\alpha+1)}\left(6 \gamma \omega+(c-3) \omega^{2}\right) t^{\alpha}\right) x^{4} \\
& +\left(\omega+\frac{3}{\Gamma(\alpha+1)}\left(14 \gamma \omega+(2 c-7) \omega^{2}\right) t^{\alpha}\right) x^{5}+\left(\omega+\frac{14}{\Gamma(\alpha+1)}\left(4 \gamma \omega+(5 c-2) \omega^{2}\right) t^{\alpha}\right) x^{6}+\ldots \tag{10}
\end{align*}
$$

4.3 Example: We consider the following non-linear time fractional Burger's partial differential equation
$\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}+u^{2}(x, t) \frac{\partial u(x, t)}{\partial x}=\gamma \frac{\partial^{2} u(x, t)}{\partial x^{2}} ; t \geq 0$
subject to initial condition $u(x, 0)=\omega ; x \in \mathrm{R}$
where $\frac{\partial^{\alpha}}{\partial x^{\alpha}}$ is the fractional differential operator(Caputo derivative) of order $0<\alpha \leq 1$.
Applying generalized two-dimensional differential transform (1) with $\left(x_{0}, t_{0}\right)=(0,0)$ on (11) we obtain
$U_{1, \alpha}(k, h)=\frac{\Gamma(\alpha(h-1)+1)}{\Gamma(\alpha h+1)}\left\{\gamma(k+2)(k+1) U_{\mathrm{i}, \alpha}(k+2, h-1)\right.$
$-\sum_{r=0}^{k} \sum_{t=0}^{k-r} \sum_{s=0}^{h-1} \sum_{p=0}^{h-s-1} U_{1, \alpha}(r, h-s-p-1) U_{1, \alpha}(t, s)(k-r-t+1) U_{1, \alpha}(k-r-t+1, h-1)$
and $U_{1, \alpha}(k, 0)=\omega ; \forall k=0,1,2,3, \ldots \ldots$.
Now utilizing the recurrence relation (12) and the initial condition (13), we obtain after a little simplification the following values
of $U_{1, \alpha}(k, h)$ for $k=0,1,2,3, \ldots$ and $h=0,1,2,3, \ldots U_{1, \alpha}(0,1)=\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{3}\right)$;
$U_{1, \alpha}(0,2)=\frac{1}{\Gamma(2 \alpha+1)}\left(-\left(\frac{2}{\Gamma(\alpha+1)} \omega\left(2 \gamma \omega-\omega^{3}\right)+\omega^{2}\right)\left(6 \gamma \omega-4 \omega^{3}\right)\right.$
$+4 \gamma\left(6 \gamma \omega-5 \omega^{3}\right)$;
$U_{1, \alpha}(1,1)=\frac{2}{\Gamma(\alpha+1)}\left(3 \gamma \omega-2 \omega^{3}\right) ; U_{1, \alpha}(2,1)=\frac{2}{\Gamma(\alpha+1)}\left(6 \gamma \omega-5 \omega^{3}\right) ; U_{1, \alpha}(3,1)=\frac{1}{\Gamma(\alpha+1)}\left(20 \gamma \omega-17 \omega^{3}\right) ;$
$U_{1, \alpha}(4,1)=\frac{2}{\Gamma(\alpha+1)}\left(15 \gamma \omega-13 \omega^{3}\right) ; U_{1, \alpha}(5,1)=\frac{1}{\Gamma(\alpha+1)}\left(42 \gamma \omega-37 \omega^{3}\right)$;
$U_{1, \alpha}(6,1)=\frac{2}{\Gamma(\alpha+1)}\left(28 \gamma \omega-25 \omega^{3}\right)$
and so on
Using the above values of $U_{1, \alpha}(k, h)$ for $k=0,1,2,3, \ldots$ and $h=0,1,2,3, \ldots$ in (2) the solution of (11) is obtained as
$u(x, t)=\omega+\frac{1}{\Gamma(\alpha+1)}\left(2 \gamma \omega-\omega^{3}\right) t^{\alpha}+\frac{1}{\Gamma(2 \alpha+1)}$

$$
\begin{align*}
& \left(-\left(\frac{2}{\Gamma(\alpha+1)} \omega\left(2 \gamma \omega-\omega^{3}\right)+\omega^{2}\right)\left(6 \gamma \omega-4 \omega^{3}\right)+4 \gamma\left(6 \gamma \omega-5 \omega^{3}\right)\right) t^{2 \alpha} \\
& +\left(\omega+\frac{2}{\Gamma(\alpha+1)}\left(3 \gamma \omega-2 \omega^{3}\right) t^{\alpha}\right) x+\left(\omega+\frac{2}{\Gamma(\alpha+1)}\left(6 \gamma \omega-5 \omega^{3}\right) t^{\alpha}\right) x^{2} \\
& +\left(\omega+\frac{1}{\Gamma(\alpha+1)}\left(20 \gamma \omega-17 \omega^{3}\right) t^{\alpha}\right) x^{3}+\left(\omega+\frac{2}{\Gamma(\alpha+1)}\left(15 \gamma \omega-13 \omega^{3}\right) t^{\alpha}\right) x^{4} \\
& +\left(\omega+\frac{1}{\Gamma(\alpha+1)}\left(42 \gamma \omega-37 \omega^{3}\right) t^{\alpha}\right) x^{5}+\left(\omega+\frac{2}{\Gamma(\alpha+1)}\left(28 \gamma \omega-25 \omega^{3}\right) t^{\alpha}\right) x^{6}+\ldots . . \tag{14}
\end{align*}
$$

V. CONCLUSIONS

In the present study, we present analytical algorithm for finding approximate form solutions of a class of Burger's model based upon the generalized differential transform method (GDTM). It may be concluded that GDTM is a reliable technique to handle linear and nonlinear fractional differential equations. Compared with other approximate methods this technique provides more realistic series solutions.

REFERENCES

[1] Zhou, J. K. 1986. Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press,Wuhan, China.
[2] Chen, C.K. and Ho, S.H.1999. Solving partial differential equations by two dimensional differential transform Method.Appl. Math. Comput.,106:171-179.
[3] Ayaz,F.2004.Solutions of the systems of differential equations by differential transform Method. Appl. Math. Comput., 147: 547-567.
[4] Abazari,R. and Borhanifar,A .2010.Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method. Comput. Math. Appl.,59 :2711-2722.
[5] Chen,C.K.1999.Solving partial differantial equations by two dimensional differential transformation method. Appl. Math. Comput.,106:171-179.
[6] Jang,M.J. and Chen,C.K.2001.Two-dimensional differential transformation method for partial differantial equations. Appl. Math. Comput.,121:261-270.
[7] Kangalgil,F. and Ayaz,F.2009.Solitary wave solutions for the KDV and mKDV equations by differential transformation method. Choas Solitons Fractals,41:464-472.
[8] Arikoglu,A. and Ozkol,I.2006. Solution of difference equations by using differential transformation method. Appl. Math. Comput.,174:1216-1228.
[9] Momani,S., Odibat,Z. and Hashim,I.2008.Algorithms for nonlinear fractional partial differantial equations: A selection of numerical methods. Topol. Method Nonlinear Anal.,31:211-226.
[10] Arikoglu,A. and Ozkol,I.2007.Solution of fractional differential equations by using differential transformation Method. Chaos Solitons Fractals,34:1473-1481.
[11] Soltanalizadeh,B. and Zarebnia,M.2011.Numerical analysis of the linear and nonlinear Kuramoto-Sivashinsky equation by using Differential Transformation method. Inter. J. Appl. Math. Mechanics,7(12):63-72.
[12] Tari,A.,Rahimi,M.Y.,Shahmoradb,S. and Talati,F.2009.Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method. J.Comput. Appl. Math.,228:70-76.
[13] Nazari,D. and Shahmorad,S.2010.Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J. Comput. Appl. Math.,234:883-891.
[14] Borhanifar,A. and Abazari,R.2011.Exact solutions for non-linear Schr.dinger equations by differential transformation Method. J. Appl. Math. Comput.,35:37-51.
[15] Borhanifar,A. and Abazari,R.2010.Numerical study of nonlinear Schr.dinger and coupled Schr.dinger equations by differential transformation method. Optics Communications,283:2026-2031.
[16] Momani,S., Odibat,Z. and Erturk,V.S.2007.Generalized differential transform method for solving a space- and time -fractional diffusion-wave equation. Physics Letters. A, 370(5-6):379-387.
[17] Odibat,Z. and Momani,S.2008.A generalized differential transform method for linear partial Differential equations of fractional order. Applied Mathematics Letters, 21(2):194-199.
[18] Odibat,Z. and Momani,S. and Erturk,V.S.2008.Generalized differential transform method: application to differential equations of fractional order. Applied Mathematics and Computation, 197(2):467-477.
[19] Erturk,V.S. and Momanib,S.2010.On the generalized differential transform method : application to fractional integro -differential equations.Studies in Nonlinear Sciences, 1(4):118-126.
[20] Garg,M.,Manohar,P. and Kalla,S.L.2011.Generalized differential transform method to Space-time fractional telegraph Equation.Int.J.of Differential Equations, Hindawi Publishing Corporation,2011, article id.:548982,9 pages,doi.:10.1155/2011/548982.
[21] Bansal,M.K. and Jain,R.2015.Application of generalized differential transform method to fractional order Riccati differential equation and numerical results.Int. J.of Pure and Appl. Math.,99(3):355-366.
[22] Cetinkaya,A.,Kiymaz.O. and Camli,J.2011.Solution of non linear PDE's of fractional order with generalized differential transform method.Int. Mathematical Forum,6(1):39-47.
[23] Das,S.2008.Functional Fractional Calculus. Springer.
[24] Miller,K.S. and Ross,B.1993.An Introduction to the Fractional Calculus and Fractional Diff. Equations. John Wiley and Son.
[25] Caputo,M.1967.Linear models of dissipation whose q is almost frequency independent-ii. Geophys J. R. Astron. Soc, 13:529-539.
[26] Podlubny,I.1999.Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.Academic Press.
[27] Almeida,R. and Torres,D.F.2011.Necessary and sufficient conditions for the fractional calculus of variations with caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 16:1490-1500.
[28] WazWaz,A.M.2002.Partial differential equations methods and applications .Saint Xavier University,Chicago, Illinois,USA,2002.

